Multiobjective fractional variational calculus in terms of a combined Caputo derivative

نویسندگان

  • Agnieszka B. Malinowska
  • Delfim F. M. Torres
چکیده

Abstract. The study of fractional variational problems in terms of a combined fractional Caputo derivative is introduced. Necessary optimality conditions of Euler–Lagrange type for the basic, isoperimetric, and Lagrange variational problems are proved, as well as transversality and sufficient optimality conditions. This allows to obtain necessary and sufficient Pareto optimality conditions for multiobjective fractional variational problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laplace Variational Iteration Method for Modified Fractional Derivatives with Non-singular Kernel

A universal approach by Laplace transform to the variational iteration method for fractional derivatives with the nonsingular kernel is presented; in particular, the Caputo-Fabrizio fractional derivative and the Atangana-Baleanu fractional derivative with the non-singular kernel is considered. The analysis elaborated for both non-singular kernel derivatives is shown the necessity of considering...

متن کامل

A New Modification of the Reconstruction of Variational Iteration Method for Solving Multi-order Fractional Differential Equations

Fractional calculus has been used to model the physical and engineering processes that have found to be best described by fractional differential equations. For that reason, we need a reliable and efficient technique for the solution of fractional differential equations. The aim of this paper is to present an analytical approximation solution for linear and nonlinear multi-order fractional diff...

متن کامل

Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative

This paper presents necessary and sufficient optimality conditions for problems of the fractional calculus of variations with a Lagrangian depending on the free end-points. The fractional derivatives are defined in the sense of Caputo.

متن کامل

Optimality conditions for fractional variational problems with Caputo-Fabrizio fractional derivatives

*Correspondence: [email protected] Department of Mathematics, School of Science, Xi’an University of Posts and Telecommunications, Chang’an Road, Xi’an, China Abstract In this paper, we study the necessary and sufficient optimality conditions for problems of the fractional calculus of variations with a Lagrange function depending on a Caputo-Fabrizio fractional derivative. The new kernel of Capu...

متن کامل

Generalized Euler–Lagrange equations for fuzzy fractional variational calculus

This paper presents the necessary optimality conditions of Euler–Lagrange type for variational problems with natural boundary conditions and problems with holonomic constraints where the fuzzy fractional derivative is described in the combined Caputo sense. The new results are illustrated by computing the extremals of two fuzzy variational problems. AMS subject classifications: 65D10, 92C45

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 218  شماره 

صفحات  -

تاریخ انتشار 2012